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Saturation and postsaturation phenomena of Rayleigh-Taylor instability with adjacent modes

Tadashi Ikegawa and Katsunobu Nishihara
Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871, Japan

~Received 2 June 2002; published 6 February 2003!

A weakly nonlinear theory has been developed for the classical Rayleigh-Taylor instability with a finite
bandwidth taken into account self-consistently. The theory includes up to third order nonlinearity, which results
in the saturation of linear growth and determines subsequent weakly nonlinear growth. Analytical results are
shown to agree fairly well with two-dimensional hydrodynamic simulations. There are generally many local
peaks of a perturbation with a finite bandwidth due to the interference of modes. Since a local amplitude is
determined from phases among the modes as well as the bandwidth, we have investigated an onset of the linear
growth saturation and the subsequent weakly nonlinear growth for different bandwidths and phases. It is shown
that the saturation of the linear growth occurs locally, i.e., each of the local maximum amplitudes~LMAs!
grows exponentially until it reaches almost the same saturation amplitude. In the random phase case, the root
mean square amplitude thus saturates with almost the same amplitude as the LMA, after most of the LMAs
have saturated. The saturation amplitude of the LMA is found to be independent of the bandwidth and depends
on the Atwood number. We derive a formula of the saturation amplitude of modes based on the results
obtained, and discuss its relation with Haan’s formula@Phys. Rev. A39, 5812 ~1989!#. The LMAs grow
linearly in time after the saturation and their speeds are approximated by the product of the linear growth rate
and the saturation amplitude. We investigate the Atwood number dependence of both the saturation amplitude
and the weakly nonlinear growth.

DOI: 10.1103/PhysRevE.67.026404 PACS number~s!: 52.57.Fg, 47.20.Ma
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I. INTRODUCTION

An interface between two fluids with different mass de
sities is unstable when the interface is accelerated into
heavy fluid. This instability is known as Rayleigh-Taylor in
stability ~RTI! @1#. Recently the RTI has found a wider spe
trum of interest in such fields as geophysics and astrophy
as well as inertial fusion energy~IFE!. The RTI in IFE target
implosion occurs both at an ablation surface in the accel
tion phase and at an interface between a hot core and a
main fuel in the stagnation phase. The RTI is one of criti
issues in IFE, because excessive distortion of the interfa
could lead to severe degradation of implosion performa
and thus less fusion output energy. The RTI grows expon
tially in the linear regime@1#. The knowledge of the linea
growth is, however, not enough for target design in IFE. I
of great importance to understand weakly nonlinear phen
ena such as saturation of the linear growth and weakly n
linear growth, since the achievement of ignition or high ga
in IFE requires the growth of the RTI to remain linear
weakly nonlinear.

In the linear regime, we can expand a perturbation i
Fourier modes and analyze the modes individually, since
modes grow independently. However, as Haan pointed
@2#, in order to evaluate the saturation of the linear grow
we must take a net perturbation into account by summ
adjacent modes. Namely we have to consider perturbat
with a finite spectral width. He derived a well-known fo
mula of the saturation amplitudeS(k):

for three dimensions,S~k!5
n

Lk2
, n52 –4, ~1!

wherek(52p/l) is a wave number andL is the system size
1063-651X/2003/67~2!/026404~11!/$20.00 67 0264
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The formula has been, however, derived from phenome
logical assumptions that the saturation of the linear grow
occurs as the root mean square~rms! of the amplitude
reacheshl(h;0.1), and the parametersn and h are not
derived self-consistently, but determined from experime
or simulations@3,4#. Subsequently, other workers@5–7# ex-
tended the model with an second-order mode coup
theory @8#. But all of them stand on the same assumption

In addition to the finite spectral width of the perturbatio
we have to consider up to third-order nonlinearity in order
evaluate the saturation and the weakly nonlinear growth s
consistently. As mentioned by Jacobs and Catton@9#, a self-
modulation of a primary mode produced by the third-ord
nonlinearity is a mechanism for deviation from the line
growth. However they considered only a single mode and
Atwood number 1, i.e., they neglected the light fluid.

Hence based on the superposition of modes, we have
veloped third-order nonlinear theories that describe conti
ous transition from the linear to the weakly nonline
growths of the classical RTI@10,11# and the ablative RTI
@12#. The theories considered an arbitrary perturbation wit
small but finite bandwidth self-consistently. In this paper w
develop the model for the classical RTI and present, in de
the derivation of coupled partial differential equations th
determine the onset of the saturation and the subseq
weakly nonlinear growth.

As will be shown in this paper, the saturation of the line
growth and the weakly nonlinear growth are determin
from the local structure of a perturbation with a finite ban
width. Local amplitudes of the perturbation are determin
from both a spectral distribution of the modes and ph
differences among the modes. For the perturbation with
finite bandwidth, we have to distinguish a local maximu
amplitude ~LMA !, the rms amplitude, and the am
©2003 The American Physical Society04-1
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plitude of thek mode. Here we investigate linear and weak
nonlinear evolution of these amplitudes for different ban
widths and different phase relations among the modes.
consider two extreme cases of the phase, random phase~RP!
and no phase difference~NPD! among the modes. In the R
case, there are many local peaks of the perturbation am
tudes comparable to each other as a result of interfere
among the modes. In the NPD case, there is only one l
peak with a large amplitude. By comparing these two ca
of the phase relation, our results reveal that the saturatio
the linear growth occurs locally, which seems to contrad
the basic assumption of Eq.~1! that the rms amplitude deter
mines the saturation.

Our results also indicate that since the LMAs saturate
almost the same amplitudes, the saturation amplitude of
rms coincides with those of the LMAs for a case with a lar
number of states. Bearing this fact in mind, we derive a n
criterion of the saturation amplitude based on the results
tained, and discuss its physical difference from Eq.~1!. Un-
derstanding the relationship between nonlinear phenom
and the Atwood number is very important for IFE, and
also interesting from a physical point of view. On a
asymptotic formula of the bubble velocity in the fully non
linear regime, the Atwood number dependence of the ve
ity has previously been reported@13–15#. The asymptotic
formula was derived from a drag-buoyancy model@13,14# or
the Layzer-type model@15,16#. In this paper, we show the
Atwood number dependence of both the saturation amplit
and the nonlinear growth rate in the weakly nonlinear
gime.

In Sec. II, we derive the coupled partial differential equ
tions. Section III consists of four subsections. In Sec. III
we show that analytical results agree fairly well with tw
dimensional hydrodynamic simulations. In Sec. III B, by c
rying out a three-dimensional analysis of a two-dimensio
flow, we investigate the nonlinear evolution of the LMA
the rms amplitude and the amplitude of thek0 mode for
different bandwidths and phases, and show that the lin
growth saturation is determined essentially from the LM
instead of the rms amplitude. We discuss the Atwood num
dependence of the saturation amplitude and the weakly n
linear growth in Sec. III C and derive a formula for the sa
ration amplitude and discuss its relation with Haan’s f
mula, Eq. ~1!, in Sec. III D. We summarize our work in
Sec. IV.

II. MATHEMATICAL FORMULATION

We consider ax-y planar interface@z5j(x,t)# between a
heavy fluid (z.j) with densityrH and a light fluid (z,j)
with densityrL(rH.rL), wherex is a two-dimensional vec
tor, subscriptsH andL denote the heavy fluid and the ligh
fluid, respectively. LetV be an area of the interface. W
assume periodic boundary conditions in thex and y direc-
tions with a sizeL,

V5$~x,y!: 0<x<L, 0<y<L%.
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We set a uniform gravitational accelerationg along the2z
direction. The acceleration induces the growth of the int
face perturbation.

We set up the problem in a standard way, the norm
mode approach@9,17,18#. We assume that the fluids are in
viscid, incompressible, and irrotational. Then, we write t
fluid velocity using velocity potentials such as

u852“8fH ~ for z.j!

52“8fL ~ for z,j!,

where the vectors with the primes are three dimensional
the vectors without it are two dimensional. The potenti
satisfy the Laplace equation

¹82f50. ~2!

We require thatfH andfL go to zero asz goes to1` and
2`, respectively.

Pressure is given by Bernoulli’s equation

p5rF]f

]t
2

1

2
~“8f!22gjG . ~3!

From the pressure continuity at the interface,pHuj5pLuj , we
obtain

rHF ]fH

]t Uj2
1

2
~“8fH!2U

j

2gjG
5rLF ]fL

]t Uj2
1

2
~“8fL!2U

j

2gjG . ~4!

Since the interface moves with the fluids,dj/dt5]j/]t
1(u•“)j52]f/]zuj5uzuj , which gives,

]j

]t
5(“fuj)•“j2

]f

]zU
j

. ~5!

Since f is either fH or fL , this equation is actually two
equations. In Eqs.~4! and ~5!, the partial derivative of the
velocity potential at the interface can be calculated with
Taylor series expansion with respect to the perturbation
plitude under the assumption ofkuju;O(e),1. For ex-
ample, Eq.~5! becomes

]j

]t
5F“fuz501j

]

]z
~“f!U

z50
G•“j

2
]f

]zU
z50

2j
]2f

]z2 U
z50

2
j2

2

]3f

]z3U
z50

1h. o. t., ~6!

where h. o. t. represents terms higher than the third orde
In order to treat the interface perturbation with a fin

bandwidthk5k01dk, wherek has discrete allowed value
(2p l /L,2pm/L) for integersl andm anduk0u.udku, we take
the following description for the amplitude of the perturb
tion:
4-2
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j~x,t !5(
dk

jk~ t !c cos@~k01dk!•x#

5H F(
dk

jk~ t !cos~dk•x!Gc cos~k0•x!

2F(
dk

jk~ t !sin~dk•x!Gc sin~k0•x!J
[

c

2
j̄~x,t !eik0•x1c.c., ~7!

wherec is a normalizing constant determined later,j̄ repre-
sents a complex amplitude, and c.c. denotes the com
conjugate. Equation~7! allows the perturbation amplitude t
vary slowly in space compared with the wavelength cor
sponding tol052p/k0. We assume that the spatial deriv
tive of the amplitude is second order with respect to
amplitude. Namely, in

“j5
c

2
eik0•x~ ik01“ !j̄1c.c., ~8!

“ j̄;dkj̄;(dk/k0)( j̄/l);O(e2) andk05uk0u.
The velocity potentials as well as the interface displa

ment are then composed of the slowly varying amplitudes

fH~x8,t !5
c

2
f̄H~x8,t !eik0•x2k0z1c.c., ~9a!

fL~x8,t !5
c

2
f̄L~x8,t !eik0•x1k0z1c.c., ~9b!

so that the first order of the Laplace equation with respec
the amplitude is satisfied. The higher order of the Lapla
equation~2! gives relations for the amplitudes of the veloci
potential:
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k0

]f̄H,L

]z
56 ik0•“f̄H,L6

1

2k0
2

uk03“u2f̄H,L1h. o. t.,

~10!

where the upper and lower signs are forf̄H andf̄L , respec-
tively. The left hand side of Eq.~10! and the first term of the
right hand side are second order, while the second term
third order.

Nonlinear terms generate higher harmonics. Therefo
we rewritej, fH , andfL as

j~x,t !5(
n

cn

2
j̄ (n)~x,t !eink0•x1c.c., ~11a!

fH~x8,t !5(
n

cn

2
f̄H

(n)~x8,t !eink0•x2nk0z1c.c., ~11b!

fL~x8,t !5(
n

cn

2
f̄L

(n)~x8,t !eink0•x1nk0z1c.c. ~11c!

The normalizing constants are then given by

cn5A 2

11d0n
, ~12!

wheredmn is the Kronecker delta. We assume that the fu
damental mode (n51) is in first order. Then52 andn50
modes arise from the mode coupling of the fundamen
modes (k01k052k0 , k02k050), and they are in secon
order ofe2. We consider up to the third-order nonlinearity
describe the self-modulation of the fundamental mode. He
after, we introduce dimensionless variablesk0x, g1t, k0j,
k0

2f/g1, andg2 /g1, whereg1[Aak0g and g2[A2g1 are
the linear growth rates of thek0 and 2k0 modes, respectively
Substituting Eqs.~11! into Eqs.~4! and ~5! and picking up
terms associated with exp(ink0•x) (n51,2,0), we obtain the
following system of equations from Eq.~4!:
11a

2 F]fH
(1)

]t
2A2j (1)*

]fH
(2)

]t
2

A2

2

]fH
(1)*

]t
j (2)2j (0)

]fH
(1)

]t
22A2fH

(1)* fH
(2)12j (1)ufH

(1)u21
1

4 S 2uj (1)u2
]fH

(1)

]t

1
]fH

(1)*

]t
j (1)2D 2

j (1)

a G5
12a

2 F]fL
(1)

]t
1A2j (1)*

]fL
(2)

]t
1

A2

2

]fL
(1)*

]t
j (2)1j (0)

]fL
(1)

]t

22A2fL
(1)* fL

(2)22j (1)ufL
(1)u21

1

4 S 2uj (1)u2
]fL

(1)

]t
1

]fL
(1)*

]t
•j (1)2D 2

j (1)

a G , ~13a!

11a

2 S ]fH
(2)

]t
2

A2

2
j (1)

]fH
(1)

]t
2

j (2)

a D 5
12a

2 S ]fL
(2)

]t
1

A2

2
j (1)

]fL
(1)

]t
2

j (2)

a D , ~13b!

11a

2 F]fH
(0)

]t
2

1

4 S j (1)*
]fH

(1)

]t
1

]fH
(1)*

]t
j (1)D 2

1

2
ufH

(1)u22
j (0)

a G5
12a

2 F]fL
(0)

]t
1

1

4 S j (1)*
]fL

(1)

]t
1

]fL
(1)*

]t
j (1)D

2
1

2
ufL

(1)u22
j (0)

a G , ~13c!
4-3
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where the asterisk represents the complex conjugate,a[(rH2rL)/(rH1rL) is the Atwood number,k̂0[k0 /k0, and we omit
the bar. We also obtain from Eq.~5!,

]j (1)

]t
5fH

(1)2 i ~ k̂0•“ !fH
(1)2

1

2
uk̂03“u2fH

(1)2j (0)fH
(1)1

A2

2
fH

(1)* j (2)2A2j (1)* fH
(2)1

1

4
~2uj (1)u2fH

(1)2fH
(1)* j (1)2!,

~14a!

52fL
(1)1 i ~ k̂0•“ !fL

(1)1
1

2
uk̂03“u2fL

(1)2j (0)fL
(1)1

A2

2
fL

(1)* j (2)2A2j (1)* fL
(2)2

1

4
~2uj (1)u2fL

(1)2fL
(1)* j (1)2!,

~14b!

]j (2)

]t
52fH

(2)2A2j (1)fH
(1) ~14c!

522fL
(2)2A2j (1)fL

(1) . ~14d!

Note that an equation forn50 is ]j (0)/]t50 within second order.
We can derive the coupled partial differential equations for the velocity potentialsfH

(1) andfH
(2) , by eliminating the other

terms such asfL
(1) , fL

(2) , j (1), j (2) in Eqs.~13a!–~13c! and~14a!–~14d!. Details of the derivation are shown in Appendix A
We then obtain

]2fH
(1)

]t2
5fH

(1)2 i ~ k̂0•“ !fH
(1)2

1

2
uk̂03“u2fH

(1)1
~41g2

2!a1~42g2
2!

A2
fH

(1)*
]fH

(2)

]t
1

a~213g2
2!

A2

]fH
(1)*

]t
fH

(2)

12~123a!U]fH
(1)

]t
U2

fH
(1)2~3a11!fH

(1)* S ]fH
(1)

]t D 2

1a~a23!ufH
(1)u2fH

(1) , ~15a!

]2fH
(2)

]t2
5g2

2fH
(2)1A2~12a!fH

(1)
]fH

(1)

]t
. ~15b!
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Equations~15a! and~15b! are the coupled partial differentia
equations that describe the transition from the linear to
weakly nonlinear regimes continuously.

We here discuss the linear growth rate of each mode. A
well known, shorter wavelength modes grow faster th
longer wavelength modes. The linear terms of Eq.~15a! rep-
resent this property accurately up to second order (dk)2. To
clarify this feature, by treating the slowly varying amplitud
as exp(idk•x), we rewrite the first to third terms in Eq.~15a!
with dimensional variables as

g1
2fH

(1)2 i
g1

2

k0
~ k̂0•“ !fH

(1)2
g1

2

2k0
2

uk̂03“u2fH
(1)

5agF k01 k̂0•dk1
1

2k0
3 ~dkx

2ky
222dkxdkykxky

1dky
2kx

2!Geidk•x'auk01dkugfH
(1) . ~16!

This is the second-order approximation in the Taylor se
of the square of the linear growth rateAauk01dkug. The
02640
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third term on the left hand side represents a thr
dimensional effect in the Fourier space, and it vanishes
two-dimensional case.

Third-order nonlinear terms on the left hand side of E
~15a! consist of mode coupling between the fundamental a
the second harmonics@for example, 2(k01dk1)2(k0
1dk2)5k01(2dk12dk2)], and the self-modulation of the
fundamental harmonic@(k01dk1)1(k01dk2)2(k01dk3)
5k01(dk11dk22dk3)#. They determine the weakly non
linear growth of the fundamental. In the limit ofa51 and a
single mode~in this limit fH

(1)* 5fH
(1)), the coupled equa-

tions coincide with those derived by Jacobs and Catton@9#.
The partial differential equation for the third harmonic, 3k0,
is derived in Appendix B. Though the third harmonic dete
mines nonlinear structures of the interface such as
bubble-spike structure, it is not as important for the eval
tion of the saturation amplitude as the second harmonic
The third harmonic does not affect the growth of the fund
mental mode in the framework of this model.

III. RESULTS AND DISCUSSIONS

In this section we analyze the weakly nonlinear growth
the RTI by solving Eqs.~15a! and ~15b! numerically as an
initial value problem. We consider perturbations of the tw
4-4
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dimensional interface with meshes ofMx3M y . The normal-
ized system size isk0L5k0DxMx , whereDx is a mesh size
andm5L/l05k0DxMx/2p should be an integer. As an in
tial perturbation, we consider eitherjÞ0, j̇50 or j50, j̇
Þ0. For the former case, we set the following conditions
the time derivatives of the velocity potentials of the fund
mental, becausej (1)5ḟH

(1) in the linear regime. SinceḟH is

a complex function as shown in Eq.~9!, we define ḟH

[ḟH,c1 i ḟH,s and

ḟH,c
(1) ~ t50!5 (

l x ,l y
Al x ,l y

cos@ i ~dkl x ,l y
•x1w l x ,l y

!#,

~17a!

ḟH,s
(1) ~ t50!5 (

l x ,l y
Al x ,l y

sin@ i ~dkl x ,l y
•x1w l x ,l y

!#,

~17b!

and fH(t50)50, wherew l x ,l y
is an initial phase of the

mode,dkl x ,l y
5(2p l x /L,2p l y /L) is the wave vector within

a finite bandwidth, andx5( i xDx,i yDx) is a position vector.
i x , i y , l x , andl y are integers, where2Mx/2, l x,Mx/2, and
2M y/2, l y,M y/2. Al x ,l y

is the amplitude of the perturba
tion. We here consider a Gaussian distribution function o
flat top distribution function for the amplitudes of mod
within the bandwidth (udkl x ,l y

u<dk):

Al x ,l y
5H cgexpF2

1

2
S udkl x ,l y

u

dk
D 2G

cf ,

~18!

wherecg andcf are normalization constants. We assume t
the amplitudes of modes outside the initial bandwidth
initially zero. We analyze the modes outside the bandwi
generated by the mode coupling of the fundamentals as
ond harmonic. When we give an initial perturbation on t
interface velocity, we set the same conditions as Eq.~17! for
fH

(1)(t50) andḟH(t50)50.
Since modes grow independently of each other in the

ear regime, we can expand perturbations into Fourier mo
and analyze the modes individually. In the nonlinear regim
however, we must analyze a net amplitude of the pertur
tions by summing the modes. This requirement implies t
the local structure of the perturbation is important in t
nonlinear regime. The local amplitude is determined fro
both the spectral distribution and the phase difference am
the modes. Here, we consider two extreme cases of
phase, RP and NPD among the modes (w l x ,l y

50). As dis-
cussed in Sec. I, in the RP case, there are many local p
of the perturbation amplitudes comparable to each other
result of interference among the modes. In the NPD ca
there is only one local peak with a large amplitude. For th
two cases, we compare the nonlinear growth of the LM
with that of the rms amplitude.
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A. Comparison with simulation

We first show the validity of the governing equations
comparing with two-dimensional hydrodynamic simulation
To solve Eqs.~15a! and ~15b! numerically, we define the
slowly varying velocity potential at meshes of number a
mesh sizeMx532 andk0Dx53p, respectively. The mini-
mum wave number then becomesdkmin /k05(2p/L)/k0
52p/k0MDx51/48. We carried out two-dimensional simu
lations with the use of an Eulerian hydrodynamic simulati
code, IMPACT2D @19#. In the analytical model, we conside
only the slowly varying amplitude of the velocity potentia
while in the hydrodynamic simulation we must use fi
meshes to resolve perturbations with a wavelength of
order of 2p/k0. We used mesh numbers ofMx3Mz52048
3300 in the simulations. We chose the wavelength cor
sponding tok0 asl05L/m andm548, so that the difference
of the wave number between the modes withm and m61
coincides with the minimum wave numberdkmin in the ana-
lytical model. Since in the Eulerian hydrodynamic code t
spatial resolution is limited by a finite size of the mesh, it
difficult to give a very small amplitude of corrugation muc
less than the mesh size. We thus give initial perturbation
the fluid velocity instead of the interface corrugation. T
initial velocity perturbations are incompressible and irro
tional and they decay as exp(2kuzu). The initial velocity per-
turbations are given for mode numbers withinm6M /2548
616. We choose the Gaussian distribution function with
bandwidth ofdk/k051022 as an initial spectrum of the ve
locity perturbation, whose root mean square equals
k0j̇ rms /g1[^(k0j̇/g1)2&1/251023, andj(t50)50. Param-
eters used in the simulation arep51 Gbar, a50.82 (rL
50.5 g/cm3, rH55 g/cm3), g51015 cm/s2 and L
(5MxDx)51024 mm. We assumed very high pressure
simulate incompressible fluids.

Figure 1 shows the normalized Fourier amplitudes of
surface displacement for modes from 45 to 51 as function
normalized time in the NPD case. Figures 1~a! and 1~b! pre-
sents simulation results and solutions of Eqs.~15a! and
~15b!, respectively. The saturation of the linear growth sta
to occur around timeg1t57 –8. Dips of the perturbations
shown in Fig. 1 correspond to phase change due to the n

FIG. 1. Normalized Fourier amplitudesk0jk of the interface
displacement as functions of normalized timeg1t in NPD case.~a!
Simulation results for each mode from 45 to 51 and~b! analytical
results of corresponding modes. The same symbols are used fo
corresponding modes.
4-5
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linear mode interaction. As shown in Fig. 1, the solutions
Eqs. ~15a! and ~15b! agree fairly well with the simulation
results including the phase changes of the individual mo

B. Saturation of linear growth

The analysis of the weakly nonlinear phenomena of R
should include a finite bandwidth. In the finite bandwid
case, there are different amplitudes, such as the LMA,
rms amplitude, and the amplitude of thek0 mode. Their time
evolution may not be the same in the weakly nonlinear
gime. We show their time evolution in the present mod
with a finite bandwidth ofdk/k05131022, comparing with
the result of a single mode model@9#. The analysis is per-
formed in the three-dimensional RP case with the parame
(Mx ,M y ,k0Dx,a)5(512,512,3p,1) and the flat top distri-
bution function of the initial spectrum. Here we useda
51, since in Ref.@9# they considered only such a case. W
chosek0j rms51023 and j̇50 as the initial conditions. The
initial amplitude of the single mode was chosen to equa
that of the rms in the finite bandwidth case.

In Fig. 2, the solid line represents the temporal evolut
of the amplitude with the single mode, while dashed lin
represent those with the finite bandwidth: the maxim
value of the LMAs~triangles!, the rms amplitude~squares!,
and the amplitude of thek0 mode, i.e.,k0jk0

~circles!. As is
clearly seen in the figure, the amplitudes of the single mo
the LMA, the rms, and thek0 mode initially grow exponen-
tially with almost the same linear growth rate for the sm
bandwidth ofdk/k05131022 @see Eq.~16!#. It seems that
results of both the single mode and the finite bandwidth s
cessfully reproduce the saturation of the linear growth. T
maximum value of the LMAs starts to saturate at first wh
it reachesk0j;0.23 in the finite bandwidth case. At tha
time the rms amplitude keeps growing until it reaches alm
the same saturation amplitude of the maximum value of
LMAs. This can be explained as follows.

In the RP case, there are many local peaks due to
interference among the modes. Fordk/k05131022, the
number of the local peaks is'33102. If we choose three

FIG. 2. Temporal evolution of the amplitudes in the rando
phase case: Solid line is the amplitude of Jacobs’s single-m
model, dashed lines are, respectively, the amplitudes of the
~squares!, k0jk0

~circles!, and the maximum value among the LMA
~triangles! of our model.
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different fixed points where the initial amplitude of the inte
face corrugation has different local maximum values,
amplitudes at these points grow in time as shown in Fig
All of them initially grow exponentially, and each of them
starts to saturate at different times as it reaches the s
saturation amplitude of the maximum of the LMAs. Dips
the LMA indicate that the position of the LMA moves in th
weakly nonlinear regime. Although the position of the LM
moves, its value keeps growing linearly in time after t
saturation as shown with the dashed line in Fig. 3. The m
coupling in the nonlinear regime results in the phase cha
among the modes and thus the motion of the points wh
the LMA exists. This result indicates that the local structu
of the interface determines the saturation of the lin
growth. When most of the LMAs reach the saturation amp
tude, the rms amplitude also saturates at almost the s
saturation amplitude as that of the LMA. The spectru
broadenings are also observed in the nonlinear reg
@10,11#.

As shown in Fig. 2, the amplitude of thek0 mode also
saturates at the same time as the rms amplitude. It shoul
also noted that the saturation amplitude of the single mod
almost the same as that of the maximum of the LMAs w
finite bandwidth. However, for the case of the finite ban
width, the saturation amplitude of thek0 mode is much less
than that of the single-mode, as expected. As the initial sp
tral width is wider, the saturation amplitude of the individu
mode becomes much smaller than that of the rms. Hence
single mode analysis results in an overestimate of
growth, and is not adequate for the evaluation of pertur
tions with the finite bandwidth.

As discussed above, the LMAs saturate at almost
same amplitude. The local amplitude is determined from
phase among the modes in addition to the spectral width.
now discuss different dependences of the rms saturation
plitude on the spectral width between the RP and NPD ca
We calculate the temporal growth of the RTI for three diffe
ent initial spectral widths ofdk/k05231023, 1.631022,
and 0.128. We use the Gaussian distribution function of

de
s FIG. 3. Temporal evolution of the normalized local maximu
amplitudesk0j at three different fixed points with different initia
amplitudes. The dashed line is the temporal growth of the lo
peak moving in thex-y plane in nonlinear regime.
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SATURATION AND POSTSATURATION PHENOMENA OF . . . PHYSICAL REVIEW E 67, 026404 ~2003!
initial spectrum, and choosea50.8. The parameter
(Mx ,M y ,k0Dx) are the same as before. Figure 4 shows
resultant growth of the rms amplitudes~solid line! and the
maximum among the LMAs~dashed line! for the NPD@Fig.
4~a!# and the RP@Fig. 4 ~b!#, respectively. Since we choos
the initial rms amplitudes as the same value ofA^(k0j)2&
51024 for three different initial bandwidths, the initia
LMAs are proportional to the bandwidth as shown in F
4~a!. As expected, the initial LMA of the NPD is larger tha
that of the RP for each corresponding bandwidth. The LM
start to saturate when they reach the same amplitude ofk0j
'0.27 even for the three different initial spectral widths, a
for two different initial phases among the modes, i.e.,
NPD and RP. It indicates that the saturation of the lin
growth is determined by the LMA instead of the rms amp
tude, and the saturation amplitude of the LMA is indepe
dent of the initial bandwidth.

The rms amplitude saturates when the LMA does in
NPD case, and the saturation amplitude of the rms decre
with the increase of the bandwidth as shown in Fig. 4~a!.
This decrease of the rms saturation amplitude is easily
derstood from the consideration of spatial distributions of
LMA. In the NPD case, there is only one local peak with
large amplitude. Hence, the rms amplitudes saturate with
ferent values for the different initial spectral widths when t
corresponding LMAs reach the saturation amplitude, wh
satisfactorily explains the results shown in Fig. 4~a!. On the
other hand, in the RP case the rms amplitudes keep grow
after the LMAs start to saturate until they reach almost
same saturation amplitudes of the LMAs as has been sh

FIG. 4. Temporal evolution of the normalized local maximu
amplitudesk0j ~dashed lines! and the normalized rms amplitude
A^(k0jk)

2& ~solid line! for three different initial spectral widths
dk/k05231023 ~squares!, 1.631022 ~triangles!, and 0.128
~circles!. ~a! NPD case and~b! RP case.
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before. The rms amplitudes at the transition from the lin
to the weakly nonlinear growth do not depend much on
initial bandwidth in the RP case.

C. Atwood number dependence and weakly nonlinear growth

So far, we have discussed the nonlinear saturation w
the fixed Atwood number. In this section, we will investiga
the dependence of the saturation amplitude on the Atw
number.

As shown in Fig. 4, the saturation amplitude is det
mined from the LMA, which is independent of the finit
initial bandwidth. As shown in Fig. 2, the saturation amp
tude of the LMA with a finite bandwidth is the same as th
with a single mode. Thus, the saturation amplitude of
LMA does not depend on the number of modes compos
the perturbation. Therefore, the Atwood number depende
of the saturation amplitude of the LMA obtained from
single-mode analysis could be the same as that with a fi
bandwidth.

We observe the saturation amplitude of the single mo
by changing the Atwood number. Solid line in Fig. 5 prese
its results. We here define the saturation when the gro
rate decreases to 95% of the linear growth rate. As the
wood number increases, the saturation amplitude decrea
We can explain this decrease of the saturation amplit
from the third-order nonlinearity. Specifically, the third-ord
nonlinearity consists of two different terms as seen in E
~15a!. One causes the enhancement of the growth due to
mode coupling terms between the second harmonic and
fundamental. The other introduces suppression of
growth, which comes from the third-order self-modulatio
~last three terms!. As seen in the second term of the rig
hand side of Eq.~15b!, as the Atwood number increases, t
source terms of the second harmonic become small. Thus
enhancement effects becomes small compared with the
pression effects as the Atwood number increase. This le
to the decrease of the saturation amplitude with the incre
of the Atwood number.

By using an asymptotic formula of the bubble velocity
the fully nonlinear regime, some workers estimated the
wood number dependence of the amplitude at which
asymptotic growth begins@13–15#. The saturation amplitude
in the weakly nonlinear regime in Fig. 5 agrees with th

FIG. 5. Atwood number dependence of both the saturation
plitude ~solid line with circles! and the weakly nonlinear growth
rate ~triangles! of the LMA.
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T. IKEGAWA AND K. NISHIHARA PHYSICAL REVIEW E 67, 026404 ~2003!
estimated using the asymptotic formula at the point at wh
saturation amplitude is a decreasing function of the Atwo
number, but does not quantitatively coincide with it.

After the saturation of the exponential growth, the R
grows approximately with a constant speed that we ca
weakly nonlinear growth rate. Figure 6 shows the tempo
growth of the LMA with a50.8, where the saturation am
plitude isk0j'0.27. As shown in the figure, our model re
produces the fact that the RTI grows with a constant sp
after the linear growth saturation. Open triangles in Fig
represent the weakly nonlinear growth rates obtained fr
the constant speeds for the different Atwood numbers. M
experiments and simulations@2,21,23,24# show that the
weakly nonlinear growth rate is approximately given as

vwn~k0!'g1S~k0!. ~19!

The growth rate of the right hand side of Eq.~19! corre-
sponds to the circles in Fig. 5, because it is normalized
(k0 /g1)vwn(k0)5(k0 /g1)g1S(k0)5k0S(k0). The growth
rates ~open triangles! agree fairly well with that evaluated
from Eq.~19! ~circles!. Closed triangles in Fig. 5 are also th
weakly nonlinear growth rates renormalized byAk/g to
show their dependence on the Atwood number. Their p
tive gradient indicates that the weakly nonlinear growth r
increase slightly as the Atwood number increases.

D. Criterion of saturation amplitude

As we have shown in Sec. III B, the saturation of t
linear growth is determined from the local maximum amp
tude instead of the root mean square amplitude. The
amplitude saturates as most of the LMAs saturate. There
if we can observe the LMA directly, the knowledge of th
rms amplitude or the amplitudes of modes may not be
portant for the investigation of the linear growth saturatio
The amplitude of thek0 mode also saturates when the rm
does because it is proportional to the rms amplitude. Hist
cally, however, there are many theoretical@5–7,20–22# and
experimental@23,24# works with the use of Haan’s formula
Eq. ~1!, which gives the saturation amplitudes of mod
Bearing this fact in mind, we here present a formula for
saturation amplitude of thek0 mode based on the resul
obtained and discuss its relations with Haan’s formula.

FIG. 6. Temporal growth of the local maximum amplitude.
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We derive a formula for the saturation amplitude of thek0
mode in the RP case. By introducingS(k0), which denotes
the amplitude of marginally saturated modes, we can exp
the rms saturation amplitude as

j rms5A(
k

jk
2'ANstateS~k0!, ~20!

whereNstate is the number of states defined by the product
the bandwidth and the density of state (L/2p), i.e., Nstate
5dkL/2p for the 2D case andNstate5p(dkL/2p)2 for 3D
case. The density of state is the reciprocal of the minim
wave numberdkmin(52p/L) used in Sec. III A. Solving Eq.
~20! for S(k0), we obtain

S~k0!'
j rms

ANstate

. ~21!

As shown in Sec. III B, with the fixed Atwood number th
saturation amplitude of the rms is almost independent of
initial bandwidth, and is approximately a constant value
the fixed Atwood number in the RP case. If it is independ
of the number of states, we expect the saturation amplit
of modesS(k0) to be inversely proportional to the squa
root of the number of states. Since the number of states is
product of the bandwidth and the density of state, we sh
the dependence of the saturation amplitudes of both the
and thek0 mode on them. In this subsection, we use t
Gaussian distribution function for the initial spectrum a
choosea50.8. Figure 7~a! shows the saturation amplitude
as a function of the initial bandwidth with the fixed densi
of statek0L/2p5768, while Fig. 7~b! shows these as a func
tion of the density of state with the fixed bandwidthdk/k0
51.631022. The saturation amplitudes in Fig. 7 are e
semble averaged. Error bars correspond to the rms devia
of the data. Open and closed symbols are the saturation
plitude of the rms andk0 mode, respectively. Triangles an
circles are results for 2D and 3D, respectively. First of a
from Fig. 7, the saturation amplitude of the rms is almo

FIG. 7. Dependence of the normalized saturation amplitude
both the rms~open symbols! and thek0 mode~closed ones! on the
number of states in the RP case.~a! is a function of an initial
bandwidth and~b! is a function of density of state. Here triangle
and circles represent results of 2D and 3D, respectively.
4-8
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SATURATION AND POSTSATURATION PHENOMENA OF . . . PHYSICAL REVIEW E 67, 026404 ~2003!
independent of the number of states, and is approximate
constant value. Thus, the saturation amplitude of thek0 mode
is inversely proportional to the square root of the number
states as expected:j rms}ANstate

215(2Ap/L)/dk for the
3D case andj rms}ANstate

215A(2p/L)/dk for the 2D case,
respectively. As shown in the error bars of the saturat
amplitude of the rms in Fig. 7, the error decreases as
number of states increases. This decrease of the errors
cates that the fundamental assumption in Haan’s satura
formula, i.e., the rms determines the saturation, become
appropriate approximation for the large number of states

SpecifyingNstate in Eq. ~21!, we obtain

S~k0!'5
n8

e8Lk0
2

, n8[2Aph8 for 3D

n8

Ae8Lk0
3

, n8[A2ph8 for 2D,

~22!

where e8 ([dk/k0) is a normalized spectral width, an
h8 ([k0j rms) is a normalized saturation amplitude of th
rms. As shown in Eq.~22!, two independent parameters
h8 and e8 determine the saturation amplitudeS(k0). Haan
has used the same relation as Eq.~22! in his derivation of Eq.
~1!. From the comparison of Eqs.~1! and ~22!, we obtain a
relation n5n8/e852Aph8/e8 for the 3D case. The satura
tion amplitude of the rms (h8) depends on the Atwood num
ber because that of the LMA depends on it as discussed
previous section.

In Eq. ~22!, for a51 the saturation amplitudeh8'0.23
~see Fig. 5!. Thenn5n8/e852Aph8/e8'2 if e8'0.4. But,
we do not obtain any evidence thatn is a constant as as
sumed in Refs.@2,8# because the bandwidthe8 depends on
the initial condition. As implied from the error bars in Fig.
the formula has an error of 20–30 %.

IV. CONCLUSION

We have developed a weakly nonlinear theory of
three-dimensional Rayleigh-Taylor instability~RTI! for an
arbitrary perturbation with a small but finite bandwidth. B
taking third-order nonlinearity into account, we have show
in detail, the derivation of coupled partial differential equ
tions that describe a continuous transition from the linea
the weakly nonlinear growths of the RTI. Analytical resu
agree fairly well with two-dimensional hydrodynamic sim
lations including phase changes of modes due to the m
coupling in the weakly nonlinear regime.

We have investigated the onset of the linear growth sa
ration for two different spectra of initial perturbations, i.e
the random phase~RP! and no phase difference~NPD!
among modes. The theory reveals that the saturation of
linear growth occurs locally. Namely, each of the local ma
mum amplitudes~LMA’s ! starts to saturate when it reach
almost the same amplitude that depends on the Atwood n
ber. Therefore, in the case of a large number of states,
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root mean square amplitude saturates with almost the s
amplitude as the LMA after most of the LMAs reach th
saturation amplitude. When the number of states is v
large, this result verifies one of Haan’s assumptions, i.e.,
saturation of the linear growth of thek0 mode occurs as the
rms amplitude reaches a certain value.

The saturation amplitude of the LMA and thus that of t
rms are found to be independent of the number of state
the RP case, although the spectral distribution of the per
bation determines the LMA. Since the number of states
given by the product of the bandwidth and the density
states, the saturation amplitude of thek0 mode could be pro-
portional to the reciprocal of the bandwidth. Although th
spectral broadening occurs in the weakly nonlinear regim
the bandwidth at the saturation of the rms still depends on
initial value within our model. In the derivation of Haan
formula, he assumed that the bandwidth, which determi
the net perturbation, could be a certain value. This discr
ancy between our theory and Haan’s formula remains un
solved. In the case that the phases among the modes
some correlations and there exist a few peaks with la
amplitudes, the rms amplitude may saturate at a smaller
plitude than the LMAs with the increase of the bandwid
since the saturation is determined essentially from the LM

The theory also shows that after the saturation the LM
grows linearly in time and that its speed is approximated
the product of the linear growth rate and the saturation a
plitude. We have studied the dependence of both the sat
tion amplitude and the weakly nonlinear growth on the A
wood number. With the increase of the Atwood number,
saturation amplitude decreases, while the weakly nonlin
growth increases slightly.
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APPENDIX A: DERIVATION OF COUPLED PARTIAL
DIFFERENTIAL EQUATIONS

We show the details of derivation of the coupled part
differential equations. Since we consider up to the thi
order nonlinearity of the fundamental mode, for 2k0 and 0k0
modes we take into account up to the second-order non
earity. Thus in nonlinear terms for 2k0 and 0k0, we can treat
fL

(1)52fH
(1) , j (1)5]fH

(1)/]t from Eqs. ~13a!, ~14a!, and
~14b!. Then subtracting Eq.~14d! from Eq. ~14c!, we obtain

fL
(2)52fH

(2)1A2fH
(1)

]fH
(1)

]t
. ~A1!

By substituting Eq.~A1! into Eq. ~13b!, we have
4-9
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j (2)5
]fH

(2)

]t
2

A2

2 S ]fH
(1)

]t D 2

2
A2~12a!

2
fH

(1)2 . ~A2!

After taking the time derivative of Eq.~A2! and eliminating
]j (2)/]t by using Eq.~14c!, we obtain Eq.~15b!. In the same
way, we obtain

j (0)5
]fH

(0)

]t
2aufH

(1)u22aU]fH
(1)

]t
U2

~A3!

from Eq.~13c!. By taking the time derivative of Eq.~A3!, we
have

]2fH
(0)

]t2
52aS ]fH

(1)*

]t
fH

(1)1fH
(1)*

]fH
(1)

]t D , ~A4!

where we have used]j (0)/]t50. By elimination of]j (1)/]t
from Eqs.~14a! and~14b!, and using Eqs.~A1! and~A2! we
obtain

fL
(1)52fH

(1)12
]fH

(0)

]t
fH

(1)12A2
]fH

(1)*

]t
fH

(2)

2A2fH
(1)*

]fH
(2)

]t
22~a11!U]fH

(1)

]t
U2

fH
(1)

1fH
(1)* S ]fH

(1)

]t D 2

2~3a21!ufH
(1)u2fH

(1) . ~A5!

By substituting Eqs.~A2! and~A3! into Eq.~14a!, we obtain

]j (1)

]t
5fH

(1)2 i ~ k̂0•“ !fH
(1)2

1

2
uk̂03“u2fH

(1)2
]fH

(0)

]t
fH

(1)

2A2
]fH

(1)*

]t
fH

(2)1
A2

2
fH

(1)*
]fH

(2)

]t

1
2a11

2
U]fH

(1)

]t
U2

fH
(1)2

3

4
fH

(1)* S ]fH
(1)

]t D 2

1
3a21

2
ufH

(1)u2fH
(1) . ~A6!

By using Eqs.~13c!, ~A1!, and~A2!, and the time derivative
of Eq. ~A5!, we obtain from~13a!,
02640
j (1)5
]fH

(1)

]t
2

]fH
(0)

]t

]fH
(1)

]t
2

112a

A2

]fH
(1)*

]t

]fH
(2)

]t

1
~g2

222!2~g2
212!a

A2
fH

(1)* fH
(2)

1
8a11

4
U]fH

(1)

]t
U2 ]fH

(1)

]t

1
~2a21!~12a!

2

]fH
(1)*

]t
fH

(1)213aufH
(1)u2

]fH
(1)

]t
.

~A7!

By elimination of ]j (1)/]t from Eq. ~A6! and the time de-
rivative of Eq.~A7!, we obtain Eq.~15a!.

APPENDIX B: PARTIAL DIFFERENTIAL EQUATION FOR
THIRD HARMONIC

Let us derive the partial differential equation for the thi
harmonic corresponding to Eq.~15a!. This procedure is done
in the same manner as the fundamental. Substituting the
pansion forj, fH , andfL into the expanded equations~4!
and ~5! and picking up the terms associated withei3k0•x

yields the following system of coupled equations:

]j (3)

]t
53fH

(3)2
3A2

2
fH

(1)j (2)23A2j (1)fH
(2)1

3

4
j (1)2fH

(1) .

~B1!

523fL
(3)2

3A2

2
fL

(1)j (2)23A2j (1)fL
(2)

2
3

4
j (1)2fL

(1) . ~B2!

11a

2 S ]fH
(3)

]t
2A2j (1)

]fH
(2)

]t
2

A2

2

]fH
(1)

]t
j (2)1

1

4
j (1)2

]fH
(1)

]t

2
j (3)

a D 5
12a

2 S ]fL
(3)

]t
1A2j (1)

]fL
(2)

]t
1

A2

2

]fL
(1)

]t
j (2)

1
1

4
j (1)2

]fL
(1)

]t
2

j (3)

a
. ~B3!

Subtracting Eqs.~B1! and ~B2!,

fL
(3)52fH

(3)1A2fH
(1)

]fH
(2)

]t
12A2

]fH
(1)

]t
fH

(2)

1~a21!fH
(1)323fH

(1)S ]fH
(1)

]t D 2

. ~B4!
4-10



r-
ted

SATURATION AND POSTSATURATION PHENOMENA OF . . . PHYSICAL REVIEW E 67, 026404 ~2003!
Substituting the time derivative of this into Eq.~B3!, we
obtain

j (3)5
]fH

(3)

]t
2

3A2

2

]fH
(1)

]t

]fH
(2)

]t
1

A2~a21!

2
~2

1g2
2!fH

(1)fH
(2)1

3

4 S ]fH
(1)

]t D 3

1
5~12a!

2
fH

(1)2
]fH

(1)

]t
.

~B5!

Elimination of ]j (3)/]t from Eq. ~B1! and the time deriva-
tive of Eq. ~B5! leads to
n,

n,

02640
]2fH
(3)

]t2
53fH

(3)1
A2

2
~g2

212!~12a!fH
(1)

]fH
(2)

]t
2

A2

2
@~g2

2

12!a14~12g2
2!#

]fH
(1)

]t
fH

(2)1~a21!fH
(1)3

12~a21!fH
(1)S ]fH

(1)

]t D 2

. ~B6!

This is the partial differential equation for the third ha
monic. The amplitude of the third harmonic can be evalua
from Eq. ~B5! usingfH

(3) obtained from Eq.~B6!.
g-
y,

od-

fe,
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