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Saturation and postsaturation phenomena of Rayleigh-Taylor instability with adjacent modes
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A weakly nonlinear theory has been developed for the classical Rayleigh-Taylor instability with a finite
bandwidth taken into account self-consistently. The theory includes up to third order nonlinearity, which results
in the saturation of linear growth and determines subsequent weakly nonlinear growth. Analytical results are
shown to agree fairly well with two-dimensional hydrodynamic simulations. There are generally many local
peaks of a perturbation with a finite bandwidth due to the interference of modes. Since a local amplitude is
determined from phases among the modes as well as the bandwidth, we have investigated an onset of the linear
growth saturation and the subsequent weakly nonlinear growth for different bandwidths and phases. It is shown
that the saturation of the linear growth occurs locally, i.e., each of the local maximum amplitlMés)
grows exponentially until it reaches almost the same saturation amplitude. In the random phase case, the root
mean square amplitude thus saturates with almost the same amplitude as the LMA, after most of the LMAs
have saturated. The saturation amplitude of the LMA is found to be independent of the bandwidth and depends
on the Atwood number. We derive a formula of the saturation amplitude of modes based on the results
obtained, and discuss its relation with Haan's form{Phys. Rev. A39, 5812 (1989]. The LMAs grow
linearly in time after the saturation and their speeds are approximated by the product of the linear growth rate
and the saturation amplitude. We investigate the Atwood number dependence of both the saturation amplitude
and the weakly nonlinear growth.
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I. INTRODUCTION The formula has been, however, derived from phenomeno-

logical assumptions that the saturation of the linear growth
An interface between two fluids with different mass den-occurs as the root mean squafens) of the amplitude
sities is unstable when the interface is accelerated into theeachesy\(7~0.1), and the parametess and » are not

heavy fluid. This instability is known as Rayleigh-Taylor in- derived self-consistently, but determined from experiments
stability (RTI) [1]. Recently the RTI has found a wider spec- or simulations[3,4]. Subsequently, other workef§—7] ex-
trum of interest in such fields as geophysics and astrophysiagnded the model with an second-order mode coupling
as well as inertial fusion enerdyFE). The RTI in IFE target  theory[8]. But all of them stand on the same assumptions.
implosion occurs both at an ablation surface in the accelera- |n addition to the finite spectral width of the perturbation,
tion phase and at an interface between a hot core and a colge have to consider up to third-order nonlinearity in order to
main fuel in the stagnation phase. The RTI is one of criticalevaluate the saturation and the weakly nonlinear growth self-
issues in IFE, because excessive distortion of the interfacespnsistently. As mentioned by Jacobs and Caf@iina self-
could lead to severe degradation of implosion performancenodulation of a primary mode produced by the third-order
and thus less fusion output energy. The RTI grows exponemonlinearity is a mechanism for deviation from the linear
tially in the linear regimg1]. The knowledge of the linear growth. However they considered only a single mode and the
growth is, however, not enough for target design in IFE. It isAtwood number 1, i.e., they neglected the light fluid.
of great importance to understand weakly nonlinear phenom- Hence based on the superposition of modes, we have de-
ena such as saturation of the linear growth and weakly nonyeloped third-order nonlinear theories that describe continu-
linear growth, since the achievement of ignition or high gainous transition from the linear to the weakly nonlinear
in IFE requires the growth of the RTI to remain linear or growths of the classical RT[10,11 and the ablative RTI
weakly nonlinear. [12]. The theories considered an arbitrary perturbation with a
In the linear regime, we can expand a perturbation intasmall but finite bandwidth self-consistently. In this paper we
Fourier modes and analyze the modes individually, since thgevelop the model for the classical RTI and present, in detail,
modes grow independently. However, as Haan pointed outhe derivation of coupled partial differential equations that
[2], in order to evaluate the saturation of the linear growth determine the onset of the saturation and the subsequent
we must take a net perturbation into account by summingveakly nonlinear growth.
adjacent modes. Namely we have to consider perturbations As will be shown in this paper, the saturation of the linear
with a finite spectral width. He derived a well-known for- growth and the weakly nonlinear growth are determined
mula of the saturation amplituds(k): from the local structure of a perturbation with a finite band-
width. Local amplitudes of the perturbation are determined
from both a spectral distribution of the modes and phase
differences among the modes. For the perturbation with the
finite bandwidth, we have to distinguish a local maximum
wherek(=2m/\) is a wave number andis the system size. amplitude (LMA), the rms amplitude, and the am-

for three dimensions,S(k) = v=2-4, (1)

Lk2’
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plitude of thek mode. Here we investigate linear and weakly We set a uniform gravitational acceleratigralong the—z
nonlinear evolution of these amplitudes for different band-direction. The acceleration induces the growth of the inter-
widths and different phase relations among the modes. Wace perturbation.

consider two extreme cases of the phase, random Rige We set up the problem in a standard way, the normal
and no phase differend®lPD) among the modes. In the RP mode approach9,17,18. We assume that the fluids are in-
case, there are many local peaks of the perturbation amplKiscid, incompressible, and irrotational. Then, we write the
tudes comparable to each other as a result of interferendlid velocity using velocity potentials such as

among the modes. In the NPD case, there is only one local L ,

peak with a large amplitude. By comparing these two cases w'==Vigy (for z>¢)
of thg phase relation, our results rev_eal that the saturatiop of ——V'¢, (for z<§),

the linear growth occurs locally, which seems to contradict

the basic assumption of E€) that the rms amplitude deter- where the vectors with the primes are three dimensional and

mines the saturation. the vectors without it are two dimensional. The potentials
Our results also indicate that since the LMAs saturate agatisfy the Laplace equation

almost the same amplitudes, the saturation amplitude of the
rms coincides with those of the LMAs for a case with a large V'2¢4=0. (2
number of states. Bearing this fact in mind, we derive a new )

criterion of the saturation amplitude based on the results ob\Ve require thaih, and ¢, go to zero az goes to++ and
tained, and discuss its physical difference from 8g. Un-  —%, respectively.

derstanding the relationship between nonlinear phenomena Pressure is given by Bernoulli’s equation

and the Atwood number is very important for IFE, and is
also interesting from a physical point of view. On an
asymptotic formula of the bubble velocity in the fully non-
linear regime, the Atwood number dependence of the veloc- o i
ity has previously been reportdd3—15. The asymptotic T rom the pressure continuity at the interfapg|:=p_ |, we
formula was derived from a drag-buoyancy mof8,14 or ~ OPtain
the Layzer-type mod€l15,16. In this paper, we show the

o 1 _
H_E(V $)?—gé|. (3

p=p

Atwood number dependence of both the saturation amplitude o 9P i E(V’q/)H)Z —gé
and the nonlinear growth rate in the weakly nonlinear re- at 2 ¢
gime.
In Sec. I, we derive the coupled partial differential equa- =p ‘9;’5'- _ E(V’qb )2 —gé|. (4)
tions. Section Il consists of four subsections. In Sec. Il A, Hoat |¢ 2 - p

we show that analytical results agree fairly well with two-

dimensional hydrodynamic simulations. In Sec. llI B, by car-  Since the interface moves with the fluidsé/dt= &/t
rying out a three-dimensional analysis of a two-dimensionat (u- V)&= — d¢/dz| = u,| s, which gives,

flow, we investigate the nonlinear evolution of the LMAs,

the rms amplitude and the amplitude of tkg mode for 23 v v d¢
different bandwidths and phases, and show that the linear E_( le)- &g
growth saturation is determined essentially from the LMA ¢
instead of the rms amplitude. We discuss the Atwood numbegince ¢ is either ¢, or ¢, , this equation is actually two
dependence of the saturation amplitude and the weakly norequations. In Eqs(4) and (5), the partial derivative of the
linear growth in Sec. 1l1 C and derive a formula for the satu-velocity potential at the interface can be calculated with the
ration amplitude and discuss its relation with Haan's for-Taylor series expansion with respect to the perturbation am-
mula, Eg. (1), in Sec. IlID. We summarize our work in plitude under the assumption & £|~0(e)<1. For ex-

©)

Sec. IV. ample, Eq.(5) becomes
IE ]
Il. MATHEMATICAL FORMULATION 70| VOlm0t (V) o Ve
We consider -y planar interfac¢ z= £(x,t) ] between a J 2 £ 5
heavy fluid ¢> ¢) with densitypy and a light fluid ¢<¢) _ _¢ — _¢ — __¢ +h.o.t., (6)
with densityp, (py>pL), Wherex is a two-dimensional vec- 9|, o "¢, _, 2 |,

tor, subscriptH andL denote the heavy fluid and the light
fluid, respectively. LetQ) be an area of the interface. We where h. o. t. represents terms higher than the third order.
assume periodic boundary conditions in thendy direc- In order to treat the interface perturbation with a finite
tions with a sizelL, bandwidthk=k,+ Jk, wherek has discrete allowed values
(2ml/L,2rm/L) for integerd andmand|ky|>| 5k|, we take
the following description for the amplitude of the perturba-
Q={(x,y): 0sx<L, Osys<L}. tion:
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_ (9$H,L ) — 1 —
£ =2, &(t)ccod (Kot 8K)-x] o™ gy ™= Fiko Vb = ko X V|2 +hoo.t,
0

(10
c cogkp-X)

=H2 &(t)cod 8k-x)
ok

where the upper and lower signs areﬂBﬂ andgL, respec-
tively. The left hand side of Eq10) and the first term of the

—| > & (t)sin(Sk-x) |c sin(ky- X) right hand side are second order, while the second term is
5K third order.
. Nonlinear terms generate higher harmonics. Therefore,
Ezg(x1t)eiko-x+ c.c., (7) Wwerewrite¢, ¢y, ande as
Cr— ,
— — _Te(n) inkg-x
wherec is a normalizing constant determined latémepre- §x0) En: 25 (x,pete+e.c, (113

sents a complex amplitude, and c.c. denotes the complex

conjugate. Equatioii7) allows the perturbation amplitude to —n) inke.

vary slowly in space compared with the wavelength corre- Pu(x' )= E ¢ (X', pemoxtiettce, (11D
sponding to\ = 2m/ky. We assume that the spatial deriva-

tive of the amplitude is second order with respect to the Ch—n) O
amplitude. Namely, in ¢L(X',t)=; S oL (X el "oZice. (119
Ve=- ¢ elkoX(iko+ V) é+c.c., (8) The normalizing constants are then given by
2°
o SLE. Z = \/—2 12
V ¢~ Ské~ (SkIKg) (£IN)~O(€?) andky= k. “= V17 Son’ (12

The velocity potentials as well as the interface displace-

ment are then composed of the slowly varying amplitudes a¥here dny, is the Kronecker delta. We assume that the fun-
damental moden(=1) is in first order. Then=2 andn=0

modes arise from the mode coupling of the fundamental
modes ky+ko=2kg, kg—koy=0), and they are in second
order ofe. We consider up to the third-order nonlinearity to
c— , describe the self-modulation of the fundamental mode. Here-
¢L(X’,t)=§¢L(X’,t)e'ko‘x+k°Z+C-C-, (9b)  after, we introduce dimensionless variable, yit, ko,
k3¢l y1, and y,/y;1, wherey;=\/ak,g and y,= 2y, are
so that the first order of the Laplace equation with respect tohe linear growth rates of the, and &, modes, respectively.
the amplitude is satisfied. The higher order of the LaplaceSubstituting Egs(11) into Egs.(4) and (5) and picking up
equation(2) gives relations for the amplitudes of the velocity terms associated with expky-x) (n=1,2,0), we obtain the

c— _
ng(x’,t):Equ(x’,t)e"‘O'X*kOZJrc.c., (9a)

potential: following system of equations from E):
|
1+a a¢>‘H1) a¢(2> V2 aqs(Hl)* acp 1 a¢(1)
| Ve 5 g EP- e —22¢l0 P+ 26 g2+ 7| 2] )P—
2 at 2 at
(1)x 1) _ (1) (2) (1)* (1)
d’ TR ez i e 2 ‘M’ \/— ‘9‘1’ 2), g(O)ﬂ
a 2 ot ot
(L 4(2) _ 9 £(1)] 4(1) 1) d’(l) ¢(1)* (1)2 5(1)
—2\2¢{1* ¢{? - 260 oV + 2|§ = £ —|. (133
Lra(odd \2 00 &) 1-a ‘M’(LZ)+ 2 gy 000 ¢ (13b)
2 ot 2 ot @ 2 ot 2 ot a |’
(0) (1) (1)x (0) (0) e (1)x
1taldgy’ 1 g(l)*‘?_HjLa_Hg(l) |¢(1>| 5 _1malidi 3 g T J ’M =
2 at at 2 at ot

5(0)

_ _| d’(l)l (130
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where the asterisk represents the complex conjugetd,po,— p)/(py+ pL) is the Atwood numberl%oE ko/ko, and we omit
the bar. We also obtain from E¢p),

9¢®) o J2 1
at=¢ﬁtw&ww¢m——M%V|¢m ém¢”+——w“%ﬂ>Jﬁ#ﬂ¢@+zmw“W¢W—¢ﬁ“#mx
(14a
Mk (1) Le 2 5(1) _ £(0) (1) ‘/5 ()% £(2) (L)% 4(2) 1 (1)]2 (1) (L)% £(1)2
:_¢|_ ‘H(kO'V)d’L +§|k0><V| ¢|_ —§ d’l_ +7¢L € _\/Eg ¢|_ _Z(Zlf | ¢|_ _¢|_ &Y,
(14b)
&fz 2 D (1
= 2¢D— 26D (140
=—2¢(P— 26D, (149

Note that an equation far=0 is 9&(®)/9t=0 within second order.

We can derive the coupled partial differential equations for the velocity potertidlsand ¢{2), by eliminating the other
terms such ag?, ¢{?, ¢1), £? in Egs.(138—(130) and(143—(14d). Details of the derivation are shown in Appendix A.
We then obtain

2 (1) 2 _ A2 (2) 2 (1)*
J H _qs(l)—l('z V)(ﬁ(l)_l“’i XV|2¢(1)—|— (4+ '}’2)(1+(4 ')’2) ¢(1)* (9¢H i a’(2+3’)/2) (7¢H ¢(2)
&tz H 0 H 2 0 H \/E H ot \/E ot H
i) 9B\ ?
+2(1=8a)|——| ¢ —Bat+ )¢l | —=| +ala=3)|of4l, (153
52 (HZ) cb(l’
PO SN2 @ o at (15b)

Equationg(159 and(15b) are the coupled partial differential third term on the left hand side represents a three-
equations that describe the transition from the linear to thelimensional effect in the Fourier space, and it vanishes in a
weakly nonlinear regimes continuously. two-dimensional case.

We here discuss the linear growth rate of each mode. As is Third-order nonlinear terms on the left hand side of Eq.
well known, shorter wavelength modes grow faster than(15a consist of mode coupling between the fundamental and
longer wavelength modes. The linear terms of 83 rep- the second harmonicgfor example, 2K+ 8k;)— (kg
resent this property accurately up to second ord#)%. To  + k) =ko+ (26k;— Jk,)], and the self-modulation of the
clarify this feature, by treating the slowly varying amplitude fundamental harmoni¢ (ky+ 8k;) + (kg + 6ks) — (ko + Sks)
as expidk- x), we rewrite the first to third terms in E¢L59 =Ko+ (ki + Sk, — 8k3)]. They determine the weakly non-
with dimensional variables as linear growth of the fundamental. In the limit ef=1 and a

single mode(in this limit ¢{* =), the coupled equa-
tions coincide with those derived by Jacobs and Catédn
I 71 The partial differential equation for the third harmonid,3
ﬁ‘bl(*l)_' k_o(ko' V)¢(1)_ 2Kz |k XV ¢(1) is derived in Appendix B. Though the third harmonic deter-
mines nonlinear structures of the interface such as the
bubble-spike structure, it is not as important for the evalua-

ag| ko+ Ko+ Sk+ —(5k2k2 25Ky ok kyKy tion of the saturation amplitude as the second harmonic is.
The third harmonic does not affect the growth of the funda-
mental mode in the framework of this model.
+ 8kZkZ) | €' X~ alko+ Sk|g B} . (16)
Ill. RESULTS AND DISCUSSIONS

In this section we analyze the weakly nonlinear growth of
This is the second-order approximation in the Taylor serieshe RTI by solving Eqs(153 and (15b) numerically as an
of the square of the linear growth ratéx|ko+ 6k|g. The initial value problem. We consider perturbations of the two-
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dimensional interface with meshesMf X M, . The normal- 10° e

ized system size ikgL =koAxM,, whereAx is a mesh size s, i

andm=L/\o=KkoAXM,/27 should be an integer. As an ini- £}

tial perturbation, we consider eithér=0, £é=0 or é=0, & § 10 :

#0. For the former case, we set the following conditions on £ :

the time derivatives of the velocity potentials of the funda- g' 10*f

mental, becausé®= (1) in the linear regime. Sincey is i

a complex function as shown in Eq9), we defineg'bH 10°

=y c+idy s and 4 5 6 7 8 94 56 7 8 9
’ ’ time yit time mit
¢f41')c(t= 0)= 2 A'x "ycos{i ( 5k'x ly X+ Pl "y)]’ disglﬁ:.erterl::oar?zjlL\Z(:eticjorilzsotu);lre]gr?nrgﬁlzl?:fi‘;ik ir?fl\;[ltl’ﬁ) I:c:liref?;)e

o (179 Simulation results for each mode from 45 to 51 dbganalytical

results of corresponding modes. The same symbols are used for the
corresponding modes.

BNt=0)= > A sini(ok, 1 x+ ey )]
Xy

A. Comparison with simulation
(17b

We first show the validity of the governing equations by
comparing with two-dimensional hydrodynamic simulations.
) 7 To solve Egs.(159 and (15b) numerically, we define the
mode, ok, | = (27l /L,27l,/L) is the wave vector within  slowly varying velocity potential at meshes of number and
a finite bandwidth, anat= (i,Ax,iyAx) is a position vector. mesh sizeM,=32 andk,Ax= 3, respectively. The mini-
ix, Iy, Ix, andl, are integers, where M,/2<|,<M,/2, and mum wave number then become¥,;,/ko=(2m/L)/kq
—M,/2<1, <M /2. A|X,,y is the amplitude of the perturba- =2n/koMAx=1/48. We carried out two-dimensional simu-
tion. We here consider a Gaussian distribution function or dations with the use of an Eulerian hydrodynamic simulation
flat top distribution function for the amplitudes of modes code,IMPACT2D [19]. In the analytical model, we consider
within the bandwidth [8k, |, |<&k): only the slowly varying amplitude of the velocity potential,

<y while in the hydrodynamic simulation we must use fine
meshes to resolve perturbations with a wavelength of the

and ¢, (t=0)=0, Wherequv,y is an initial phase of the

2
1 |5klx,ly| order of 2r/ky. We used mesh numbers bf, X M,=2048
A =1 90721 Tk (18 %300 in the simulations. We chose the wavelength corre-
xy c sponding td, as\ o= L/m andm=48, so that the difference
f

of the wave number between the modes witrand m=1
coincides with the minimum wave numbék,,,;, in the ana-
wherecy andct are normalization constants. We assume thatytical model. Since in the Eulerian hydrodynamic code the
the amplitudes of modes outside the initial bandwidth arespatial resolution is limited by a finite size of the mesh, it is
initially zero. We analyze the modes outside the bandwidthjifficult to give a very small amplitude of corrugation much
generated by the mode coupling of the fundamentals as sefess than the mesh size. We thus give initial perturbations in
ond harmonic. When we give an initial perturbation on thethe fluid velocity instead of the interface corrugation. The
interface velocity, we set the same conditions as(E@. for initial velocity perturbations are incompressible and irrota-
#M(t=0) and ¢y (t=0)=0. tional and they decay as expk|z)). The initial velocity per-
Since modes grow independently of each other in the linturbations are given for mode numbers within: M/2=48
ear regime, we can expand perturbations into Fourier modes; 16. We choose the Gaussian distribution function with the
and analyze the modes individually. In the nonlinear regimepandwidth ofsk/k,=10"2 as an initial spectrum of the ve-
however, we must analyze a net amplitude of the perturbaocity perturbation, whose root mean square equals to
tions by summing the modes. This requirement implies thako'grms/ylz<(k0'g/71)2>1/2= 103, and£(t=0)=0. Param-
the local structure of the perturbation is important in theeters used in the simulation ap=1 Gbar, «=0.82 (p,
nonlinear regime. The local amplitude is determined from=05 g/cn?, p,=5 g/cn?), g=10%cm/€ and L

both the spectral distribution and the phase difference among=M,Ax) =1024 um. We assumed very high pressure to
the modes. Here, we consider two extreme cases of th§mulate incompressible fluids.

phase, RP and NPD among the modes, ( =0). As dis- Figure 1 shows the normalized Fourier amplitudes of the
cussed in Sec. |, in the RP case, there are many local peaksirface displacement for modes from 45 to 51 as functions of
of the perturbation amplitudes comparable to each other asr@rmalized time in the NPD case. Figurgs)land 1b) pre-
result of interference among the modes. In the NPD casesents simulation results and solutions of E@k53 and
there is only one local peak with a large amplitude. For thes¢15b), respectively. The saturation of the linear growth starts
two cases, we compare the nonlinear growth of the LMAto occur around timey,;t=7-8. Dips of the perturbations
with that of the rms amplitude. shown in Fig. 1 correspond to phase change due to the non-
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amplitude
ko€, J<KoEx>?

amplitude ko

FIG. 2. Temporal evolution of the amplitudes in the random time it

phase case: Solid line is the amplitude of Jacobs’s single-mode

model, dashed lines are, respectively, the amplitudes of the rms F|G. 3. Temporal evolution of the normalized local maximum

(square kogy, (circles, and the maximum value among the LMAS  amplitudesk,¢ at three different fixed points with different initial

(trianglesg of our model. amplitudes. The dashed line is the temporal growth of the local
peak moving in thex-y plane in nonlinear regime.

linear mode interaction. As shown in Fig. 1, the solutions of

Egs. (158 and (15b) agree fairly well with the simulation different fixed points where the initial amplitude of the inter-

results including the phase changes of the individual modeface corrugation has different local maximum values, the
amplitudes at these points grow in time as shown in Fig. 3.

B. Saturation of linear growth All of them initially grow exponentially, and each of them

The analysis of the weakly nonlinear phenomena of RTIz::[}fattignS:tmur?itti da(;[ gflftfr?(;e;taginr;isma; Itth(reele_llt\:/lrfss chieSsce)lfm €
should include a finite bandwidth. In the finite bandwidth he LMA indicgte that the position of the LMA movés ir?the
case, there are different amplitudes, such as the LMA, thé . . P S

. . - Wweakly nonlinear regime. Although the position of the LMA
rms amplitude, and the amplitude of tkg mode. Their time . : . L
: : : moves, its value keeps growing linearly in time after the
evolution may not be the same in the weakly nonlinear re- . ; R
: - L saturation as shown with the dashed line in Fig. 3. The mode
gime. We show their time evolution in the present model o . . .
with a finite bandwidth ofSk/k.= 1% 10-2. comparing with coupling in the nonlinear regime results in the phase change
the result of a sinale mode ?nodiﬂ] Thé ana{) Sis ?s er. @mong the modes and thus the motion of the points where
. gie ; ' haly P the LMA exists. This result indicates that the local structure
formed in the three-dimensional RP case with the parametersf . . . )
(M M, koAx, ) = (512,512,3r,1) and the flat top distri- of the interface determines the saturation of the linear
but?o,n )fl;n?:tioﬁaof_ the i,nitiaI’ s, ectrum. Here wep used growth. When most of the LMAs reach the saturation ampli-
— 1. since in Ref[9] the consigered oﬁl such a case Wetude, the rms amplitude also saturates at almost the same
e 5 Y - y - ) saturation amplitude as that of the LMA. The spectrum
chosekoéims=10"" and £=0 as the initial conditions. The proadenings are also observed in the nonlinear regime
initial amplitude of the single mode was chosen to equal 910,11
that of.the rms in the f_|n|te bandwidth case. _ As shown in Fig. 2, the amplitude of the, mode also

In Fig. 2, the solid line represents the temporal evolutionsatyrates at the same time as the rms amplitude. It should be
of the amplitude with the single mode, while dashed linesy|s noted that the saturation amplitude of the single mode is
represent those with the finite bandwidth: the maximumgimost the same as that of the maximum of the LMAs with
value of the LMAs(triangles, the rms amplitudésquares  finjte bandwidth. However, for the case of the finite band-
and the amplitude of thie, mode, i.e.koéy (circles. Asis  \idth, the saturation amplitude of thg mode is much less
clearly seen in the figure, the amplitudes of the single modethan that of the single-mode, as expected. As the initial spec-
the LMA, the rms, and th&, mode initially grow exponen- tral width is wider, the saturation amplitude of the individual
tially with almost the same linear growth rate for the smallmode becomes much smaller than that of the rms. Hence, the
bandwidth ofk/k,=1x10"2 [see Eq.(16)]. It seems that single mode analysis results in an overestimate of the
results of both the single mode and the finite bandwidth sucgrowth, and is not adequate for the evaluation of perturba-
cessfully reproduce the saturation of the linear growth. Theions with the finite bandwidth.
maximum value of the LMAs starts to saturate at first when As discussed above, the LMAs saturate at almost the
it reacheskq,é~0.23 in the finite bandwidth case. At that same amplitude. The local amplitude is determined from the
time the rms amplitude keeps growing until it reaches almosphase among the modes in addition to the spectral width. We
the same saturation amplitude of the maximum value of theow discuss different dependences of the rms saturation am-
LMAs. This can be explained as follows. plitude on the spectral width between the RP and NPD cases.

In the RP case, there are many local peaks due to th@/e calculate the temporal growth of the RTI for three differ-
interference among the modes. Fok/ky=1x10"2, the ent initial spectral widths ofsk/ko=2x10"2%, 1.6xX10 2,
number of the local peaks is3x 10°. If we choose three and 0.128. We use the Gaussian distribution function of the

026404-6



SATURATION AND POSTSATURATION PHENOMENA @ . .. PHYSICAL REVIEW E 67, 026404 (2003

£ 045 102 I
g3 E A ] @
3 04F Jo2a 3
3 S F A A ] =
S o S 035F A o2 =
= gh E A A 3 3
a £E£ o03f Jo2 37
£ s 2 : ]
H] E5 oa5f J0.18 oF
; <
£ oot dgge 3
0. 0.6 0.8 1

Atwood number o

FIG. 5. Atwood number dependence of both the saturation am-
plitude (solid line with circle$ and the weakly nonlinear growth
rate (triangles of the LMA.

amplitude

before. The rms amplitudes at the transition from the linear
to the weakly nonlinear growth do not depend much on the
initial bandwidth in the RP case.
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C. Atwood number dependence and weakly nonlinear growth

time yit

So far, we have discussed the nonlinear saturation with
the fixed Atwood number. In this section, we will investigate

FIG. 4. Temporal evolution of the normalized local maximum e gependence of the saturation amplitude on the Atwood
amplitudeskyé (dashed linesand the normalized rms amplitudes number

W(ko&)?) (solid line) for three different initial spectral widths; As shown in Fig. 4, the saturation amplitude is deter-

— - —2 ;
iﬁig&;zé)lg;) E:stuea;erﬁQb)lﬁst(lzgse (triangles, and 0.128 mjned from _the LMA, which is_independent of .the finitg
' ' initial bandwidth. As shown in Fig. 2, the saturation ampli-
tude of the LMA with a finite bandwidth is the same as that
initial  spectrum, and choosex=0.8. The parameters with a single mode. Thus, the saturation amplitude of the
(My,My ,koAx) are the same as before. Figure 4 shows the MA does not depend on the number of modes composing
resultant growth of the rms amplitudésolid line) and the  the perturbation. Therefore, the Atwood number dependence
maximum among the LMAgdashed lingfor the NPD[Fig.  of the saturation amplitude of the LMA obtained from a
4(a)] and the RHFig. 4 (b)], respectively. Since we choose single-mode analysis could be the same as that with a finite
the initial rms amplitudes as the same value§{k,£)?) bandwidth.
=10"* for three different initial bandwidths, the initial We observe the saturation amplitude of the single mode
LMAs are proportional to the bandwidth as shown in Fig. by changing the Atwood number. Solid line in Fig. 5 presents
4(a). As expected, the initial LMA of the NPD is larger than its results. We here define the saturation when the growth
that of the RP for each corresponding bandwidth. The LMAsrate decreases to 95% of the linear growth rate. As the At-
start to saturate when they reach the same amplitudgé%f wood number increases, the saturation amplitude decreases.
~0.27 even for the three different initial spectral widths, andWe can explain this decrease of the saturation amplitude
for two different initial phases among the modes, i.e., thefrom the third-order nonlinearity. Specifically, the third-order
NPD and RP. It indicates that the saturation of the lineanonlinearity consists of two different terms as seen in Eq.
growth is determined by the LMA instead of the rms ampli- (15g8. One causes the enhancement of the growth due to the
tude, and the saturation amplitude of the LMA is indepen-mode coupling terms between the second harmonic and the
dent of the initial bandwidth. fundamental. The other introduces suppression of the
The rms amplitude saturates when the LMA does in thegrowth, which comes from the third-order self-modulations
NPD case, and the saturation amplitude of the rms decreaséast three terms As seen in the second term of the right
with the increase of the bandwidth as shown in Fige)4 hand side of Eq(15b), as the Atwood number increases, the
This decrease of the rms saturation amplitude is easily unsource terms of the second harmonic become small. Thus the
derstood from the consideration of spatial distributions of theenhancement effects becomes small compared with the sup-
LMA. In the NPD case, there is only one local peak with apression effects as the Atwood number increase. This leads
large amplitude. Hence, the rms amplitudes saturate with difto the decrease of the saturation amplitude with the increase
ferent values for the different initial spectral widths when theof the Atwood number.
corresponding LMAs reach the saturation amplitude, which By using an asymptotic formula of the bubble velocity in
satisfactorily explains the results shown in Figa)4 On the the fully nonlinear regime, some workers estimated the At-
other hand, in the RP case the rms amplitudes keep growingood number dependence of the amplitude at which the
after the LMAs start to saturate until they reach almost theasymptotic growth begingl3—15. The saturation amplitude
same saturation amplitudes of the LMAs as has been showin the weakly nonlinear regime in Fig. 5 agrees with that
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FIG. 6. Temporal growth of the local maximum amplitude. FIG. 7. Dependence of the normalized saturation amplitude of

both the rmgopen symbolsand thek, mode(closed oneson the
estimated using the asymptotic formula at the point at whicHUMPer of states in the RP case) is a function of an initial
saturation amplitude is a decreasing function of the Atwoo andwidth andb) is a function of density of state. Here triangles
number, but does not quantitatively coincide with it and circles represent results of 2D and 3D, respectively.

After the saturation of the exponential growth, the RTI . . .
grows approximately with a constant speed that we call a o\:jV: ic:]e:a/ee S;o(r:r::;a fBor :23;;3;%'?”)ar\?vﬁligﬁdge?]foﬁgi
weakly nonlinear growth rate. Figure 6 shows the tempora : - BY 0/
growth of the LMA with «=0.8, where the saturation am- he amplitude O.f mafg'”"?‘”y saturated modes, we can express
plitude iskyé~0.27. As shown in the figure, our model re- the rms saturation amplitude as
produces the fact that the RTI grows with a constant speed
after the linear growth saturation. Open triangles in Fig. 5 _ 2 N
represent the weakly nonlinear growth rates obtained from Erms= ; €~ VNstareS( ko).,
the constant speeds for the different Atwood numbers. Many
experiments and simulationg2,21,23,24 show that the whereNg,is the number of states defined by the product of
weakly nonlinear growth rate is approximately given as  the bandwidth and the density of state/Zw), i.e., Ngiate

= okL/27 for the 2D case anllg,e= 7(S5kL/27)? for 3D
vwn(Ko) = 71S(Ko). (19 case. The density of state is the reciprocal of the minimum
wave numbebk,,i,(=2#/L) used in Sec. Il A. Solving Eq.
The growth rate of the right hand side of EG.9) corre-  (20) for S(ko), we obtain
sponds to the circles in Fig. 5, because it is normalized as
(Ko/y1)vwn(ko) = (Ko /v1) v1S(Ko) =koS(Ko). The growth

(20

rates (open triangles agree fairly well with that evaluated S(ko) ~ bims _ (22)
from Eq.(19) (circles. Closed triangles in Fig. 5 are also the VNstate

weakly nonlinear growth rates renormalized b/m to . . .
show their dependence on the Atwood number. Their posi- AS Shown in Sec. il B, with the fixed Atwood number the
tive gradient indicates that the weakly nonlinear growth rate>aturation amplitude of the rms is almost independent of the

increase slightly as the Atwood number increases. initial bandwidth, and is approximately a constant value for
the fixed Atwood number in the RP case. If it is independent

of the number of states, we expect the saturation amplitude
of modesS(ky) to be inversely proportional to the square
As we have shown in Sec. lll B, the saturation of theroot of the number of states. Since the number of states is the
linear growth is determined from the local maximum ampli- product of the bandwidth and the density of state, we show
tude instead of the root mean square amplitude. The rmiéhe dependence of the saturation amplitudes of both the rms
amplitude saturates as most of the LMAs saturate. Thereforand thek, mode on them. In this subsection, we use the
if we can observe the LMA directly, the knowledge of the Gaussian distribution function for the initial spectrum and
rms amplitude or the amplitudes of modes may not be imchoosea=0.8. Figure 7a) shows the saturation amplitudes
portant for the investigation of the linear growth saturation.as a function of the initial bandwidth with the fixed density
The amplitude of thek, mode also saturates when the rmsof statekoL/27=768, while Fig. Tb) shows these as a func-
does because it is proportional to the rms amplitude. Historition of the density of state with the fixed bandwidk/k,
cally, however, there are many theoretifa+7,20-22 and  =1.6x10 2. The saturation amplitudes in Fig. 7 are en-
experimenta[ 23,24 works with the use of Haan'’s formula, semble averaged. Error bars correspond to the rms deviation
Eqg. (1), which gives the saturation amplitudes of modes.of the data. Open and closed symbols are the saturation am-
Bearing this fact in mind, we here present a formula for theplitude of the rms and, mode, respectively. Triangles and
saturation amplitude of th&, mode based on the results circles are results for 2D and 3D, respectively. First of all,
obtained and discuss its relations with Haan’s formula. from Fig. 7, the saturation amplitude of the rms is almost

D. Criterion of saturation amplitude

026404-8
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independent of the number of states, and is approximately ot mean square amplitude saturates with almost the same
constant value. Thus, the saturation amplitude okthmode  amplitude as the LMA after most of the LMAs reach the
is inversely proportional to the square root of the number ofaturation amplitude. When the number of states is very
states as expected; < VNgae *=(2/7/L)/ Sk for the large, this result verifies one of Haan's assumptions, i.e., the
3D case an@,ms* VNeate +=(27/L)/ 5k for the 2D case, saturation of the linear growth of tHe mode occurs as the
respectively. As shown in the error bars of the saturationms amplitude reaches a certain value.
amplitude of the rms in Fig. 7, the error decreases as the The saturation amplitude of the LMA and thus that of the
number of states increases. This decrease of the errors indms are found to be independent of the number of states in
cates that the fundamental assumption in Haan’s saturatidie RP case, although the spectral distribution of the pertur-
formula, i.e., the rms determines the saturation, becomes dration determines the LMA. Since the number of states is
appropriate approximation for the large number of states. given by the product of the bandwidth and the density of
SpecifyingNg;ate iN Eq. (21), we obtain states, the saturation amplitude of themode could be pro-
portional to the reciprocal of the bandwidth. Although the
spectral broadening occurs in the weakly nonlinear regime,

!

v ) ) the bandwidth at the saturation of the rms still depends on its

e =2\my' for 3D initial value within our model. In the derivation of Haan’s
_ 'Lk formula, he assumed that the bandwidth, which determined
S(ko)~ , 22 the net perturbation, could be a certain value. This discrep-
Y - /27”7, for 2D, ancy between our theory and Haan’s formula remains unre-

solved. In the case that the phases among the modes have
some correlations and there exist a few peaks with large
amplitudes, the rms amplitude may saturate at a smaller am-
where €’ (=6k/ky) is a normalized spectral width, and plitude than the LMAs with the increase of the bandwidth,
7' (=koéms) iS @ normalized saturation amplitude of the since the saturation is determined essentially from the LMA.
rms. As shown in Eq(22), two independent parameters of  The theory also shows that after the saturation the LMA
7' and €’ determine the saturation amplitu®k,). Haan grows linearly in time and that its speed is approximated by
has used the same relation as &) in his derivation of Eq. the product of the linear growth rate and the saturation am-
(1). From the comparison of Egél) and (22), we obtain a  plitude. We have studied the dependence of both the satura-
relation v=1v'/e' =2\/wn'l €' for the 3D case. The satura- tion amplitude and the weakly nonlinear growth on the At-
tion amplitude of the rms+’) depends on the Atwood num- wood number. With the increase of the Atwood number, the
ber because that of the LMA depends on it as discussed in $aturation amplitude decreases, while the weakly nonlinear
previous section. growth increases slightly.

In Eq. (22), for =1 the saturation amplitude’~0.23
(see Fig. 5. Thenv=1v'le' =2\mn'le' ~2 if ¢ ~0.4. But,
we do not obtain any evidence thatis a constant as as- ACKNOWLEDGMENTS
sumed in Refs[2,8] because the bandwidi# depends on One of the author§K.N.) would like to express his sin-

the initial condition. As implied from the error bars in Fig. 7, cere thanks to Dr. S. W. Haan for valuable discussions on the
the formula has an error of 20—-30 %. saturation amplitude of the linear growth. Computations
were done on NEC SX-5 at Cybermedia Center, Osaka Uni-

IV. CONCLUSION versity.

\/e’Lkg,

We have developed a weakly nonlinear theory of the
three-dimensional Rayleigh-Taylor instabilityRTI) for an APPENDIX A: DERIVATION OF COUPLED PARTIAL
arbitrary perturbation with a small but finite bandwidth. By DIFFERENTIAL EQUATIONS

taking third-order nonlinearity into account, we have shown, h he details of derivafi £ th led al
in detail, the derivation of coupled partial differential equa- V€ show the details of derivation of the coupled partia

tions that describe a continuous transition from the linear tcg|fferent|al_ equ_atlons. Since we consider up to the third-
the weakly nonlinear growths of the RTI. Analytical results ©rder nonlinearity of the fundamental mode, fdG2nd &,
agree fairly well with two-dimensional hydrodynamic simu- Modes we take into account up to the second-order nonlin-
lations including phase changes of modes due to the moo‘ae"z‘lr')ty' Th‘ff’)'n r:cl))nllneag)terms forkg and ko, we can treat
coupling in the weakly nonlinear regime. dL'=—¢y’, §V=0d¢y’lot from Egs. (138, (143, and

We have investigated the onset of the linear growth satut14b. Then subtracting Eq14d from Eq.(14¢), we obtain
ration for two different spectra of initial perturbations, i.e.,
the random phas€RP) and no phase differencéNPD)
among modes. The theory reveals that the saturation of the @) @) (l)8¢(Hl)
linear growth occurs locally. Namely, each of the local maxi- dI= i+ \/Ed’H BETH
mum amplitudegLMA's) starts to saturate when it reaches
almost the same amplitude that depends on the Atwood num-
ber. Therefore, in the case of a large number of states, thBy substituting Eq(Al) into Eq.(13b), we have

(A1)

026404-9



T. IKEGAWA AND K. NISHIHARA

o2 3

ot 2

Zau
ot

\/5(1_ Ct’) ¢(1)2 .

£0= >

(A2)

After taking the time derivative of EqA2) and eliminating
3£ ot by using Eq(140), we obtain Eq(15b). In the same
way, we obtain

(9(!,(1)
ot

—alo)?- (A3)

from Eq.(130. By taking the time derivative of EGA3), we
have

72 (I e
e G e G
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g I8 99 ) 1420 943 94D
ot ot ot \/E ot ot

+(7§—2)—(7§+

V2
8a+1|dgli|? agfy
4 | gt | ot

2)a

o4

L Ra-1-a) Ip* ¢<1>

> P T L e

(A7)

By elimination of 9¢(M/at from Eq. (A6) and the time de-
rivative of Eq.(A7), we obtain Eq(153.

APPENDIX B: PARTIAL DIFFERENTIAL EQUATION FOR
THIRD HARMONIC

Let us derive the partial differential equation for the third
harmonic corresponding to E(L59. This procedure is done
in the same manner as the fundamental. Substituting the ex-

where we have used(?)/9t=0. By elimination ofg¢™*)/at
from Eqgs.(148 and(14b), and using Eqs/Al) and(A2) we

obtain pansion foré, ¢, and ¢, into the expanded equatior)
and (5) and picking up the terms associated wi¥ o
¢ (1)* yields the following system of coupled equations:
= o+ 270 4P+ 22 g o 3
ag3 32 3
(2) d)(l) _3¢(3) > ¢|(_|1)§(2)_3\/§§(1)¢§_|2)+25(1)2(}5&1)_
-2 ¢<1>* —2(a+1)|——| ¢}’ (BD)
2
IpP\? oy @32 00 s ,@
+¢<H1>*( ~Ba=1)|¢Pel. (a5) 39l- = o032
3 (1)2 4(1)
- ZEWzph). (B2)
By substituting Eqs(A2) and(A3) into Eq.(14a), we obtain
1+« (9¢(3) (9¢(2) \/E ﬁgﬁ(l) ¢(1)
e _ (1) w9 2\ at —2e0 = at Ta_tHf 5(1)2 at
TGO T 1y = 1) YYH
at =¢p’—i(ke- V) oy |k XV| ot ot o
@)\ 71— (3) 0p® 2 apV
(1) 3 2@ _f_):_“(_ \/‘5(1) +‘f d’L £2
_\/‘ ¢(2) ¢(1)* a 2 ot 2
1 (9¢(1) g(S)
S — 2 (B3)
2a+1|06{)? e HERT
T d’H_Zd’H (at)
Subtracting Eqs(B1) and (B2),
1
SR (A6) ¢(2) (1)
W= o+ 2P 22 “O
(1)
By using Eqs(130, (A1), and(A2), and the time derivative (1)3_n 4 (1) ZFH
of EqQ. (A5), we obtain from(133a), Fa=1)¢q 3 Tat | (B4)
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Substituting the time derivative of this into E@B3), we
obtain

3) (1) (2) _
O 320 04 N2(amd)

ot 2 ot ot 2 (
3(dpM\3 5(1-a) M
2y 4(1) 4(2) H (1)2
e+ 7| — ) >
(B5)

Elimination of 9¢(3)/t from Eq. (B1) and the time deriva-
tive of Eq. (B5) leads to

PHYSICAL REVIEW E 67, 026404 (2003

92 (3) g (2) 2
3¢(3)+\/_—(7’2+2)(1_ Vo — —g[wé
at?
(1)
+2)a+4(1- %) aﬁt” ~1) (3
apH)
+2(a —1)¢<1>( ) . (B6)

This is the partial differential equation for the third har-
monic. The amplitude of the third harmonic can be evaluated
from Eq. (B5) using q’;ff) obtained from Eq(B6).
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